A Pharmacokinetic Comparison of Three Butyrate Products Original Research
Main Article Content
Keywords
short chain fatty acids, pharmacokinetics, gut-brain axis, lysine, tributyrin
Abstract
Introduction: The aim of this study was to compare the pharmacokinetic (PK) parameters of lysine butyrate (LysB) to sodium (NaB) and tributyrin (TB).
Methods: Ten men (29.1 ± 10.4yr) completed this randomized, three-arm, crossover clinical trial (#NCT06700785) over four visits (a screening and three testing visits). Serum butyrate and indices of affect (well-being, calm/relaxed, stressed/anxious, mood, motivation to perform tasks, alertness, and concentration) were measured prior to product ingestion, and 20-, 45-, 90-, 150-, and 210-min post-ingestion. Each butyrate product delivered a total amount of 786 mg of butyric acid.
Results: There was a trend for an interaction (p=0.095) for serum butyrate concentrations, however there were no post hoc differences over time or between treatments. NaB (144±214µg/mL/min, p=0.042, d=0.75) and LysB (189±306µg/mL/min, p=0.023, d=0.86) had a significantly greater AUC0-210 than TB (108±190µg/mL/min). NaB (2.51±4.13µg/mL, p<0.001, d=1.66) and LysB (4.53±7.56µg/mL, p=0.007, d=1.11) had a significantly greater Cmax than TB (0.91±1.65µg/mL). NaB (22.5±7.91min, p=0.008, d=1.21) and LysB (20.0±0.0min, p=0.004, d=1.45) had a significantly lower Tmax than TB (51.5±21.7min). There was a main effect of time for well-being (p=0.005), calm and relaxed (p=0.013), mood (p=0.002), motivation to perform tasks (p=0.040), alertness (p=0.035), and a treatment trend for concentration (p=0.063) while there were no differences between treatments over time for stressed and anxious (p>0.10).
Conclusions: This study is among the first to simultaneously evaluate three commercially available butyrate formulations in a controlled setting, which may help inform formulation-specific therapeutic strategies in the future. This PK study demonstrates that LysB and NaB exhibit greater bioavailability and more rapid systemic appearance compared to TB.
References
2. Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Current Opinion in Clinical Nutrition & Metabolic Care. 2012;15(5):474-479.
3. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in microbiology. 2016;7:979.
4. Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters. 2016;625:56-63. doi:10.1016/j.neulet.2016.02.009
5. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochemistry International. 2016;99:110-132. doi:10.1016/j.neuint.2016.06.011
6. Gao Z, Yin J, Zhang J, et al. Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes. 2009;58(7):1509-1517. doi:10.2337/db08-1637
7. Recharla N, Geesala R, Shi XZ. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients. 2023;15(10):2275. doi:10.3390/nu15102275
8. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Immerseel FV. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews. 2010;23(2):366-384. doi:10.1017/S0954422410000247
9. Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences. 2011;108(19):8030-8035. doi:10.1073/pnas.1016088108
10. Van Deuren T, Smolders L, Hartog A, et al. Butyrate and hexanoate-enriched triglycerides increase postprandrial systemic butyrate and hexanoate in men with overweight/obesity: A double-blind placebo-controlled randomized crossover trial. Frontiers in nutrition. 2023;9:1066950. doi:10.3389/fnut.2022.1066950
11. Davie JR. Inhibition of Histone Deacetylase Activity by Butyrate. The Journal of Nutrition. 2003;133(7):2485S-2493S. doi:10.1093/jn/133.7.2485S
12. Donohoe DR, Garge N, Zhang X, et al. The Microbiome and Butyrate Regulate Energy Metabolism and Autophagy in the Mammalian Colon. Cell Metabolism. 2011;13(5):517-526. doi:10.1016/j.cmet.2011.02.018
13. Wang R, Cao S, Bashir MEH, et al. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat Biomed Eng. 2023;7(1):38-55. doi:10.1038/s41551-022-00972-5
14. Canfora EE, van der Beek CM, Jocken JWE, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep. 2017;7(1):2360. doi:10.1038/s41598-017-02546-x
15. Tolhurst G, Heffron H, Lam YS, et al. Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2. Diabetes. 2012;61(2):364-371. doi:10.2337/db11-1019
16. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion. Journal of Biological Chemistry. 2013;288(35):25088-25097. doi:10.1074/jbc.M113.452516
17. Li Z, Yi CX, Katiraei S, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269-1279. doi:10.1136/gutjnl-2017-314050
18. Zhang L, Liu C, Jiang Q, Yin Y. Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology & Metabolism. 2021;32(3):159-169. doi:10.1016/j.tem.2020.12.003
19. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: Fermentation and Short Chain Fatty Acids. Journal of Clinical Gastroenterology. 2006;40(3):235.
20. Canfora EE, Hermes GDA, Müller M, et al. Fiber mixture-specific effect on distal colonic fermentation and metabolic health in lean but not in prediabetic men. Gut Microbes. 2022;14(1):2009297. doi:10.1080/19490976.2021.2009297
21. Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.1023806
22. Vieira ELM, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry. 2012;23(5):430-436. doi:10.1016/j.jnutbio.2011.01.007
23. Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutrition Research. 2021;95:1-18. doi:10.1016/j.nutres.2021.08.007
24. Conley BA, Egorin MJ, Tait N, et al. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clinical Cancer Research. 1998;4(3):629-634.
25. Edelman MJ, Bauer K, Khanwani S, et al. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother Pharmacol. 2003;51(5):439-444. doi:10.1007/s00280-003-0580-5
26. Egorin MJ, Yuan ZM, Sentz DL, Plaisance K, Eiseman JL. Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology. 1999;43(6):445-453. doi:10.1007/s002800050922
27. Lee KA, Hicks G, Nino-Murcia G. Validity and reliability of a scale to assess fatigue. Psychiatry Research. 1991;36(3):291-298. doi:10.1016/0165-1781(91)90027-M
28. Lopez HL, Cesareo KR, Raub B, et al. Effects of Hemp Extract on Markers of Wellness, Stress Resilience, Recovery and Clinical Biomarkers of Safety in Overweight, But Otherwise Healthy Subjects. Journal of Dietary Supplements. 2020;17(5):561-586. doi:10.1080/19390211.2020.1765941
29. Ziegenfuss TN, Kedia AW, Sandrock JE, Raub BJ, Kerksick CM, Lopez HL. Effects of an Aqueous Extract of Withania somnifera on Strength Training Adaptations and Recovery: The STAR Trial. Nutrients. 2018;10(11):1807. doi:10.3390/nu10111807
30. Daniel P, Brazier M, Cerutti I, et al. Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clinica Chimica Acta. 1989;181(3):255-263. doi:10.1016/0009-8981(89)90231-3
31. Mayorga-Ramos A, Barba-Ostria C, Simancas-Racines D, Guamán LP. Protective role of butyrate in obesity and diabetes: New insights. Frontiers in Nutrition. 2022;9:1067647. doi:10.3389/fnut.2022.1067647
32. Kim SW, Hooker JM, Otto N, et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nuclear Medicine and Biology. 2013;40(7):912-918. doi:10.1016/j.nucmedbio.2013.06.007
33. Li B, Li L, Li M, et al. Microbiota Depletion Impairs Thermogenesis of Brown Adipose Tissue and Browning of White Adipose Tissue. Cell Reports. 2019;26(10):2720-2737.e5. doi:10.1016/j.celrep.2019.02.015
34. Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). International Journal of Oncology. 2024;64(4):1-16. doi:10.3892/ijo.2024.5632
35. Cao S, Budina E, Raczy MM, et al. A serine-conjugated butyrate prodrug with high oral bioavailability suppresses autoimmune arthritis and neuroinflammation in mice. Nat Biomed Eng. 2024;8(5):611-627. doi:10.1038/s41551-024-01190-x
36. Russo R, Santarcangelo C, Badolati N, et al. In vivo bioavailability and in vitro toxicological evaluation of the new butyric acid releaser N-(1-carbamoyl-2-phenyl-ethyl) butyramide. Biomedicine & Pharmacotherapy. 2021;137:111385. doi:10.1016/j.biopha.2021.111385