Acute Caffeine Consumption Prior to Aerobic Exercise Does Not Influence Substrate Utilization in Recreationally Trained Males and Females Original Research

Main Article Content

Christopher Irvine
Mason Browning
Sofia Brustia
Violet Carter
Dylan Beridon
Ryan Gordon
Matthew Sokoloski


sex-specific, fat, carbohydrate intake


Introduction: This study aimed to examine if acute caffeine consumption influenced substrate utilization between recreationally trained males and females during submaximal aerobic exercise.
Methods: Implementing a counter-balanced, crossover design study, 14 recreationally trained males (n = 7) and females (n = 7) consumed either 4 mg/kg of caffeine in 8 oz of water (CAFF) 60 min prior to aerobic exercise at varying submaximal intensities or the solitary consumption of 8 oz of water (CON). Substrate utilization was assessed via indirect calorimetry by measuring the respiratory exchange ratio.  
Results: There were no significant main effects for substrate utilization between sexes for the CAFF (p = .265) or CON (p = .253) trial. There were also no significant main effects for independent sex analysis between the two conditions (males, p = .917; females, p = .869).
Conclusions: This study suggests no significant difference in substrate utilization between sexes when consuming caffeine. Although previous literature has indicated caffeine has the potential to increase fat utilization during moderate-intensity aerobic exercise, the current results revealed that caffeine also had no impact on substrate utilization when independently analyzing males and females.

Abstract 74 | PDF Downloads 70


1. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994; 76(6): 2253-61. doi: 10.1152/jappl.1994.76.6.2253
2. Hargreaves M, Spriet L. Exercise metabolism: fuels for the fire. Cold Spring Harb Perspect Med. 2018; 8(8). Doi: 10.1101/cshperspect.a029744
3. Cano A, Ventura L, Martinez G, Cugusi L, Caria M, Deriu F, Manca A. Analysis of sex-based differences in energy substrate utilization during moderate-intensity aerobic exercise. Euro J Appl Physiol. 2022; 122: 29-70. Doi: 10.1007/s00421-021-04802-5
4. Collado-Mateo D, Lavín-Pérez AM, Merellano-Navarro E, Del Coso J. Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients 2020; 12: 3606. Doi: 10.3390/nu12123603
5. Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Inter Society Sport Nutr. 2021;18:1. Doi: 10.1186/s12970-020-00383-4
6. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr. 15: 3, 2018. Doi:
7. Staudacher HM, Carey AL, Cummings NK, Hawley JA, Burke LM. Short-term high-fat diet alters substrate utilization during exercise but not glucose tolerance in highly trained athletes. Int J Sport Nutr Exerc Metab. 11(3): 273-86, 2001. Doi: 10.1123/ijsnem.11.3.273
8. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 98: 160-167, 2005. Doi: 10.1152/japplphysiol.00662.2003
9. Cheneviére X, Borrani F, Sangsue D, Gojanovic B, Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab. 2011; 36(1): 88-95. Doi: 10.1139/H10-086
10. Willett HN, Koltun KJ, Hackney AC. Influence of menstrual cycle estradiol-ß-17 fluctuations on energy substrate utilization-oxidation during aerobic, endurance exercise. Int J Environ Res Public Health. 18(13): 7209, 2021. Doi: 10.3390/ijerph18137209
11. Barcelos RP, Lima FD, Carvalho NR, Bresciani G, Royes LFF. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Research 2020; 80, 1-17. Doi: 10.1016/j.nutres.2020.05.005
12. Conger SA, Tuthill LM, Millard-Stafford ML. Does caffeine increase fat metabolism? A systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2022; 33(2): 112-120. Doi: 10.1123/ijsnem.2022-0131
13. McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effect on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016; 71: 294-312. Doi: 10.1016/j.neubiorev.2016.09.001
14. Schmidt SL, Bessesen DH, Stotz S, Pellor III FF, Miller BF, Horton TJ. Adrenergic control of lipolysis in women compared with men. J Appl Physiol. 117(9): 1008-1019, 2014. Doi: 10.1152/japplphysiol.00003.2014
15. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res. 2009; 48: 275-297. Doi: 10.1016/j.plipres.2009.05.001
16. Isacco L, Thivel D, Pereira B, Duclos M, Boisseau N. Maximal fat oxidation but not aerobic capacity is affected by oral contraceptive use in young healthy women. Eur J Appl Physiol. 2015; 115: 937-945. Doi: 10.1007/s00421-014-3075-7
17. Axtell RS, Bement MH, Berry R, et al. ACSM’s guidelines for exercise testing and prescription, tenth edition. Wolters Kluwer 2017.
18. Deemer SE, Castleberry TJ, Irvine C, et al. Pilot study: an acute bout of high intensity interval exercise increase 12.5 h GH secretion. Physiol Rep. 2018; 6(2): e13563. Doi: 10.14814/phy2.13563
19. Janse de Jonge XAK. Effects of the menstrual cycle on exercise performance. Sports Med. 2003; 33: 833-851. Doi: 10.2165/00007256-200333110-00004
20. Ruiz-Moreno C, Gutiérrez-Hellín J, Amaro-Gahete FJ, et al. Caffeine increases whole-body fat oxidation during 1 h of cycling at fatmax. Euro J Nutr. 60: 2077-2085, 2021. Doi: 10.1007/s00394-020-02393-z

21. Varillas-Delgado D, Aguilar-Navarro M, Muñoz A, López-Samanés A, et al. Effect of 3 and 6 mg/kg of caffeine on fat oxidation during exercise in healthy active females. Biol Sport. 40(3): 827-834, 2023. Doi: 10.5114/biolsport.2023.121321
22. Papadelis C, Kourtidou-Papadeli C, Vlachogiannis E, et al. Effects of mental workload and caffeine on catecholamines and blood pressure compared to performance variations. Brain Cogn. 51(1): 143-54, 2003. Doi: 10.1016/s0278-2626(02)00530-4
23. Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 85(4): 1493-501, 1998. Doi: 10.1152/jappl.1998.85.4.1493
24. González-Haro C, Galilea PA, González-de-Suso JM, Drobnic F and Escanero JF. Maximal lipidic power in high competitive level triathletes and cyclist. Br J Sport Med. 2007; 41(1): 23-28. Doi: 10.1136/bjsm.2006.029603
25. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol. 10, 2019. Doi: 10.3389/fphys.2019.00026
26. Muscella A, Stefáno E, Lunetti P, Capobianco L, Marsigliante S. The regulation of fat metabolism during aerobic exercise. Biomolecules 10(12): 1699, 2020. Doi: 10.3390/biom10121699
27. Tunstall RJ, Mehan KA, Wadley GD, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endrocrinol Metab. 283(1): E66-72, 2002. Doi: 10.1152/ajpendo.00475.2001
28. Deliens T, Deforche B, Chapelle L, Clarys P. Changes in weight and body composition across five years at university: A prospective observational study. PLoS ONE 2019; 14(11). Doi: 10.1371/journal.pone.0225187
29. Jeukendrup A, Gleeson M. Sport Nutrition, 3rd ed. Human Kinetic, 2019.
30. Gregory S, Wood R, Matthews T, VanLangen D, Sawyer J, Headley S. Substrate utilization is influenced by acute dietary carbohydrate intake in active, healthy females. J Sports Sci Med. 2011; 10(1): 59-65