Reliability and Validity of Contemporary Bioelectrical Impedance Analysis Devices for Body Composition Assessment Original Research

Main Article Content

Justin J. Merrigan
Nina L. Stute
Jason J. Eckerle
Nicholas S. Mackowski
James R. Walters
Maegan L. O’Connor
Kristyn N. Barrett
Robert A. Briggs
Adam J. Strang
Joshua A. Hagen


DEXA, Body Fat, Military


Introduction: The aim was to determine reliability and validity of bioelectrical impedance analysis (BIA) compared to dual energy x-ray absorptiometry (DEXA).

Methods:  Participants (n=93) were fasted and euhydrated (confirmed with urine specific gravity, USG) and underwent anthropometrics, DEXA scan (GE Prodigy), and three repeated trials on each BIA device (i.e., InBody 770, SECA mBCA 514, and FitTrack). A subset of participants (n=36) re-tested 12-weeks later to investigate longitudinal changes.

Results: All BIA devices had acceptable within-session reliability (coefficient of variation < 2%). Agreement with DEXA was unacceptable, poor, and moderate for FitTrack (Lin’s Concordance Correlation Coefficient, CCC=0.61), InBody (CCC=0.88), and SECA (CCC=0.91). FitTrack did not demonstrate systematic bias but had wide limits of agreement and larger underestimations occurring at higher BF%. InBody showed systematic underestimations with proportionate bias demonstrating more error at lower BF%. SECA demonstrated no bias but tended to underestimate BF% according to Bland-Altman Plots. Errors in BIA BF% estimates were not related with USG but were associated with DEXA measured BF%. The subtle 12-week changes in BF% did not agree between BIA and DEXA.

Conclusions: Caution should be taken when using BIA devices to assess BF% as devices demonstrated unacceptable agreement compared to DEXA.

Abstract 210 | PDF Downloads 95


1. The Lancet Gastroenterology & Hepatology. Obesity: another ongoing pandemic. Lancet Gastroenterol Hepatol. 2021;6(6):411. doi:10.1016/S2468-1253(21)00143-6
2. Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49(3):810-823.
3. Lee DH, Giovannucci EL. Body composition and mortality in the general population: A review of epidemiologic studies. Exp Biol Med. 2018;243(17-18):1275-1285. doi:10.1177/1535370218818161
4. Yamane GK. Obesity in civilian adults: potential impact on eligibility for US military enlistment. Mil Med. 2007;172(11):1160-1165.
5. Police SB, Ruppert N. The US Military’s battle with obesity. J Nutr Educ Behav. 2022;54(5):475-480. doi:10.1016/j.jneb.2021.12.003
6. Chaston TB, Dixon JB, O& PE, apos, Brien. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes. 2007;31(5):743-751.
7. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85(1):115-122.
8. Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566-572. doi:10.1097/MCO.0b013e32830b5f23
9. Prior BM, Cureton KJ, Modlesky CM, et al. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol. 1997;83(2):623-630.
10. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12(1):45-51.
11. Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today’s clinical practice. Radiol Clin. 2010;48(3):541-560.
12. Loenneke JP, Wilson JM, Wray ME, Barnes JT, Kearney ML, Pujol TJ. The estimation of the fat free mass index in athletes. Asian J Sports Med. 2012;3(3):200.
13. Day K, Kwok A, Evans A, et al. Comparison of a bioelectrical impedance device against the reference method dual energy X-ray absorptiometry and anthropometry for the evaluation of body composition in adults. Nutrients. 2018;10(10):1469.
14. Brewer GJ, Blue MNM, Hirsch KR, Peterjohn AM, Smith-Ryan AE. Appendicular body composition analysis: validity of bioelectrical impedance analysis compared with dual-energy x-ray absorptiometry in division i college athletes. J Strength Cond Res. 2019;33(11):2920-2925. doi:10.1519/JSC.0000000000003374
15. Frija-Masson J, Mullaert J, Vidal-Petiot E, Pons-Kerjean N, Flamant M, d’Ortho MP. Accuracy of smart scales on weight and body composition: observational study. JMIR MHealth UHealth. 2021;9(4):e22487.
16. Merrigan J, Gallo S, Fields J, Jones M. Foot-to-foot bioelectrical impedance, air displacement plethysmography, and dual energy x-ray absorptiometry in resistance-trained men and women. Int J Exerc Sci. 2018;11(4):1145-1155.
17. Heyward V. ASEP methods recommendation: body composition assessment. J Exerc Physiol Online. 2001;4(4). Accessed August 22, 2017.
18. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors. 2014;14(6):10895-10928.
19. Howe CA, Corrigan RJ, Djalali M, McManaway C, Grbcich A, Aidoo GS. Feasibility of using bioelectrical impedance analysis for assessing youth weight and health status: preliminary findings. Int J Environ Res Public Health. 2021;18(19):10094.
20. Hofsteenge GH, Chinapaw MJ, Weijs PJ. Fat-free mass prediction equations for bioelectric impedance analysis compared to dual energy X-ray absorptiometry in obese adolescents: a validation study. BMC Pediatr. 2015;15(1):1-9.
21. Sun G, French CR, Martin GR, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74-78.
22. Beeson WL, Batech M, Schultz E, et al. Comparison of body composition by bioelectrical impedance analysis and dual-energy X-ray absorptiometry in Hispanic diabetics. Int J Body Compos Res. 2010;8(2):45.
23. Neovius M, Hemmingsson E, Freyschuss B, Uddén J. Bioelectrical impedance underestimates total and truncal fatness in abdominally obese women. Obesity. 2006;14(10):1731-1738.
24. Tyrrell VJ, Richards G, Hofman P, Gillies GF, Robinson E, Cutfield WS. Foot-to-foot bioelectrical impedance analysis: a valuable tool for the measurement of body composition in children. Int J Obes. 2001;25(2):273.
25. Kasvis P, Cohen TR, Loiselle SÈ, et al. Foot-to-foot bioelectrical impedance accurately tracks direction of adiposity change in overweight and obese 7- to 13-year-old children. Nutr Res. 2015;35(3):206-213. doi:10.1016/j.nutres.2014.12.012
26. Macfarlane DJ, Chan NT, Tse MA, Joe GM. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention. J Sports Sci. 2016;34(12):1176-1181.
27. Warton DI, Duursma RA, Falster DS, Taskinen S. smatr 3– an R package for estimation and inference about allometric lines. Methods Ecol Evol. 2012;3(2):257-259. doi:10.1111/j.2041-210X.2011.00153.x
28. Ludbrook J. Linear regression analysis for comparing two measurers or methods of measurement: but which regression? Clin Exp Pharmacol Physiol. 2010;37(7):692-699. doi:10.1111/j.1440-1681.2010.05376.x
29. Ludbrook J. A primer for biomedical scientists on how to execute Model II linear regression analysis. Clin Exp Pharmacol Physiol. 2012;39(4):329-335. doi:10.1111/j.1440-1681.2011.05643.x
30. Merrigan JJ, Martin JR. Is the OUTPUT Sports unit reliable and valid when estimating back squat and bench press concentric velocity? J Strength Cond Res. AoP.
31. Lin LIK. A Concordance Correlation Coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255-268. doi:10.2307/2532051
32. McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Rep HAM2005-062. 2005;62.
33. Neovius M, UddéN J, Hemmingsson E. Assessment of change in body fat percentage with DXA and eight-electrode BIA in centrally obese women: Med Sci Sports Exerc. 2007;39(12):2199-2203. doi:10.1249/mss.0b013e3181579.38a
34. Hamasaki H, Hamasaki Y. Comparison between two methods of bioelectrical impedance analyses for measuring abdominal visceral fat tissue. J Endocrinol Metab. 2018;8(4):76-78. doi:10.14740/jem.v8i4.518
35. Saunders MJ, Blevins JE, Broeder CE. Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med Sci Sports Exerc. 1998;30(6):885-892.
36. Brodie DA, Eston RG, Coxon AY, Kreitzman SN, Stockdale HR, Howard AN. Effect of changes of water and electrolytes on the validity of conventional methods of measuring fat-free mass. Ann Nutr Metab. 1991;35(2):89-97.
37. Barreira TV, Tseh W. The effects of acute water ingestion on body composition analyses via Dual-Energy X-Ray Absorptiometry. Clin Nutr. 2020;39(12):3836-3838. doi:10.1016/j.clnu.2020.03.037
38. Flasar C. What is urine specific gravity? Nursing2022. 2008;38(7):14. doi:10.1097/01.NURSE.0000325315.41513.a0
39. Dixon CB, LoVallo SJ, Andreacci JL, Goss FL. The effect of acute fluid consumption on measures of impedance and percent body fat using leg-to-leg bioelectrical impedance analysis. Eur J Clin Nutr. 2006;60(1):142-146. doi:10.1038/sj.ejcn.1602282
40. Griffith JR, White ED, Fass RD, Lucas BM. Comparison of body composition metrics for United States Air Force Airmen. Mil Med. 2018;183(3-4):e201-e207. doi:10.1093/milmed/usx053
41. Bosy-Westphal A, Mast M, Eichhorn C, et al. Validation of air-displacement plethysmography for estimation of body fat mass in healthy elderly subjects. Eur J Nutr. 2003;42(4):207-216. doi:10.1007/s00394-003-0416-4
42. Popkin BM. Is the obesity epidemic a national security issue around the globe? Curr Opin Endocrinol Diabetes Obes. 2011;18(5):328.