Carbohydrate-Protein Coingestion Enhances Cycling Performance with Minimal Recovery Time between Bouts of Exhaustive Intermittent Exercise

Main Article Content

Erica Goldstein
Jeffrey Stout
Tristan Starling-Smith
David Fukuda

Keywords

Abstract

Introduction: The addition of protein to a carbohydrate solution has been shown to effectively stimulate glycogen synthesis in an acute setting and enhance exercise performance in a subsequent bout of exhaustive exercise. This study examined the effects of carbohydrate-protein (CHO-P), carbohydrate (CHO), and placebo (PLA) within a 2-hour recovery period on subsequent high-intensity exercise performance.


Methods: This was a randomized, single-blind between-subject design. Participants (n = 25) were assigned to consume one of three beverages during a 2-hour recovery period: PLA, CHO (1.2 g/kg bm), or CHO-P (0.8 g/kg bm CHO + 0.4 g/kg bm PRO). During Visit#1, participants completed graded exercise testing (VO2peak; cycle ergometer). Familiarization (Visit#2) consisted of 5 x 4 min intervals at 70-80% of peak power output [PPO, watts] with two minutes of active recovery at 50W, followed by time to exhaustion [TTE] at 90% PPO. The same high-intensity interval protocol with TTE was conducted pre-and post-beverage consumption on Visit #3.


Results: The ANCOVA indicated a significant difference among the group means for the posttest TTE (F2,21=8.248, p=.002, ƞ2=.440) and RER (F2,21=6.811, p=.005, ƞ2=.393) values after adjusting for the pretest differences.


Conclusions: Carbohydrate-protein co-ingestion was effective in promoting an increase in TTE performance with limited time to recover.

Abstract 323 | PDF Downloads 83

References

Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physio. 1993;265(3):E380-E391. doi:10.1152/ajpendo.1993.265.3.E380
2. Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817-828. doi:10.1038/s42255-020-0251-4
3. Hawley JA, Leckey JJ. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise. Sports Med. 2015;45(1):5-12. doi:10.1007/s40279-015-0400-1
4. Williams C, Rollo I. Carbohydrate Nutrition and Team Sport Performance. Sports Med. 2015;45(1):13-22. doi:10.1007/s40279-015-0399-3
5. O’Brien MJ, Viguie CA, Mazzeo RS, Brooks GA. Carbohydrate dependence during marathon running. Med Sci Sports Exerc. 1993;25(9):1009-1017.
6. Namma-Motonaga K, Kondo E, Osawa T, et al. Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients. 2022;14(7):1320. doi:10.3390/nu14071320
7. Alghannam AF, Gonzalez JT, Betts JA. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients. 2018;10(2):253. doi:10.3390/nu10020253
8. Burke LM, van Loon LJC, Hawley JA. Postexercise muscle glycogen resynthesis in humans. Journal of Applied Physiology. 2017;122(5):1055-1067. doi:10.1152/japplphysiol.00860.2016
9. Rustad PI, Sailer M, Cumming KT, et al. Intake of Protein Plus Carbohydrate during the First Two Hours after Exhaustive Cycling Improves Performance the following Day. Eynon N, ed. PLoS ONE. 2016;11(4):e0153229. doi:10.1371/journal.pone.0153229
10. Dahl MA, Areta JL, Jeppesen PB, et al. Co-ingestion of protein and carbohydrate in the early recovery phase improves endurance performance despite like glycogen degradation and AMPK phosphorylation. J Appl Physiol. June 2020. doi:10.1152/japplphysiol.00817.2019
11. Millard-Stafford M, Warren GL, Thomas LM, Doyle JA, Snow T, Hitchcock K. Recovery from Run Training: Efficacy of a Carbohydrate-Protein Beverage? Int J Sport Nutr Exerc Metab. 2005;15(6):610-624. doi:10.1123/ijsnem.15.6.610
12. McCarthy DG, Spriet LL. Performance Effects of Carbohydrate Ingestion Between Bouts of Intense Aerobic Interval Exercise. Int J Sports Physiol and Perform. 2020;15(2):262-267. doi:10.1123/ijspp.2019-0239
13. McKay AKA, Stellingwerff T, Smith ES, et al. Defining Training and Performance Caliber: A Participant Classification Framework. Int J Sports Physiol Perform. 2022;17(2):317-331. doi:10.1123/ijspp.2021-0451
14. Kirkpatrick SI, Subar AF, Douglass D, et al. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am J Clin Nutr. 2014;100(1):233-240. doi:10.3945/ajcn.114.083238
15. Clark NW, Wells AJ, Coker NA, et al. The acute effects of thermogenic fitness drink formulas containing 140 mg and 100 mg of caffeine on energy expenditure and fat metabolism at rest and during exercise. J Int Soc Sports Nutr. 2020;17(1):10. doi:10.1186/s12970-020-0341-4
16. Urbaniak GC, Plous S. Research Randomizer (Version 4.0) [Computer software]. Research Randomizer. http://www.randomizer.org/. Published 2013. Accessed June 2, 2020.
17. Green SB, Salkind NJ, Akey TM. Using SPSS for Windows; Analyzing and Understanding Data. 2nd ed. USA: Prentice Hall PTR; 2000.
18. Betts J, Williams C, Duffy K, Gunner F. The influence of carbohydrate and protein ingestion during recovery from prolonged exercise on subsequent endurance performance. J Sports Sci. 2007;25(13):1449-1460. doi:10.1080/02640410701213459
19. Hopkins WG, Schabort EJ, Hawley JA. Reliability of Power in Physical Performance Tests. Sports Med. 2001;31(3):211-234. doi:10.2165/00007256-200131030-00005
20. Margolis LM, Allen JT, Hatch-Mcchesney A, Pasiakos SM. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Med Sci Sports Exerc. 2021;53(2):384-393. doi:10.1249/MSS.0000000000002476
21. Berardi J, Price T, Noreen E, Lemon P. Postexercise Muscle Glycogen Recovery Enhanced with a Carbohydrate-Protein Supplement. Med Sci Sports Exerc. 2006;38(6):1106-1113. doi:10.1249/01.mss.0000222826.49358.f3
22. Alghannam AF, Jedrzejewski D, Bilzon J, Thompson D, Tsintzas K, Betts JA. Influence of Post-Exercise Carbohydrate-Protein Ingestion on Muscle Glycogen Metabolism in Recovery and Subsequent Running Exercise. Intl J Sport Nutr Exerc Metab. 2016;26(6):572-580. doi:10.1123/ijsnem.2016-0021
23. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001;280(6):E982-E993. doi:10.1152/ajpendo.2001.280.6.E982
24. Lunn WR, Pasiakos SM, Colletto MR, et al. Chocolate Milk and Endurance Exercise Recovery: Protein Balance, Glycogen, and Performance. Med Sci Sports Exerc. 2012;44(4):682-691. doi:10.1249/MSS.0b013e3182364162
25. Levenhagen DK, Carr C, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise protein intake enhances whole-body and leg protein accretion in humans. Med Sci Sports Exerc. 2002;34(5):828-837.
26. Breen L, Philp A, Witard OC, et al. The influence of carbohydrate–protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(16):4011-4025. doi:10.1113/jphysiol.2011.211888
27. Moore DR, Camera DM, Areta JL, Hawley JA. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl Physiol Nutr Metab. 2014;(9):987. doi:10.1139/apnm-2013-0591
28. Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab. 2006;290(4):E708-E715. doi:10.1152/ajpendo.00357.2005
29. Weltan SM, Bosch AN, Dennis SC, Noakes TD. Influence of muscle glycogen content on metabolic regulation. Am J Physiol Endocrinol Metab. 1998;274(1):E72-E82. doi:10.1152/ajpendo.1998.274.1.E72
30. Boisseau N, Isacco L. Substrate metabolism during exercise: Sexual dimorphism and women’s specificities. Eur J Sport Sci. 2021;0(0):1-12. doi:10.1080/17461391.2021.1943713
31. Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi:10.1186/s12970-020-00383-4