The Effects of Different Exercise Intensities and Modalities on Cortisol Production in Healthy Individuals: A Review

Main Article Content

Ricardo Torres
Panagiotis Koutakis
Jeffrey Forsse

Keywords

Cortisol, Exercise, Aging, Aerobic Exercise

Abstract

Cortisol is a hormone that is secreted in response to physiological stress. Exercise contributes significantly to changes in circulating cortisol concentrations. With exercise, there is increased activation of the sympathetic system to stimulate the release of adrenocorticotropic hormone, which releases cortisol into the blood. Current research has predominately studied the effects that aerobic exercise and resistance training have on cortisol production. Prolonged aerobic exercise, especially at higher intensities, significantly elevates cortisol concentrations when compared to similar duration and intensities of resistance exercise. Age, gender, physical fitness level, exercise intensity, training status, and modality are all variables that influence the production of cortisol. Elevated cortisol concentrations are highly indicative of muscle catabolism, increasing the loss of lean muscle tissue. This is a significant health concern for the growing elderly population. The rate of cortisol production changes as an individual ages and has been observed to have differing responses to exercise intensities in males and females. Cortisol production is correlated with exercise intensity and duration but does not increase the same across all exercise intensities. Higher exercise intensities and duration appear to be the main contributing factors that influence the production of cortisol, increasing the potential for muscle catabolism and muscle loss.

Abstract 130 | PDF Downloads 109

References

1. Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Invest. 2008;31(7):587-591.
2. Wittert GA, Livesey JH, Espiner EA, Donald RA. Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Med Sci Sports Exerc. 1996;28(8):1015-1019.
3. Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Hormone & IGF Research. 2010;20(5):380-385. doi:10.1016/j.ghir.2010.08.001
4. Hackney AC. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert Rev Endocrinol Metab. 2006;1(6):783-792. doi:10.1586/17446651.1.6.783
5. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339-361.
6. Di Blasio A, Izzicupo P, Tacconi L, et al. Acute and delayed effects of high-intensity interval resistance training organization on cortisol and testosterone production. J Sports Med Phys Fitness. Published online November 6, 2014.
7. Rämson R, Jürimäe J, Jürimäe T, Mäestu J. Behavior of testosterone and cortisol during an intensity-controlled high-volume training period measured by a training task-specific test in men rowers. J Strength Cond Res. 2009;23(2):645-651. doi:10.1519/JSC.0b013e318196b801
8. Szivak TK, Hooper DR, Dunn-Lewis C, et al. Adrenal cortical responses to high-intensity, short rest, resistance exercise in men and women. J Strength Cond Res. 2013;27(3):748-760. doi:10.1519/JSC.0b013e318259e009
9. McCaulley GO, McBride JM, Cormie P, et al. Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol. 2008;105(5):695-704. doi:10.1007/s00421-008-0951-z
10. Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology. 2007;103(3):903-910. doi:10.1152/japplphysiol.00195.2007
11. Kraemer WJ, Patton JF, Gordon SE, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. Journal of Applied Physiology. 1995;78(3):976-989.
12. Arazi H, Damirchi A, Asadi A. Age-related hormonal adaptations, muscle circumference and strength development with 8weeks moderate intensity resistance training. Annales d’Endocrinologie. 2013;74(1):30-35. doi:10.1016/j.ando.2012.11.004
13. Häkkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med. 1995;16(8):507-513. doi:10.1055/s-2007-973045
14. Häkkinen K, Pakarinen A, Newton RU, Kraemer WJ. Acute hormone responses to heavy resistance lower and upper extremity exercise in young versus old men. Eur J Appl Physiol Occup Physiol. 1998;77(4):312-319. doi:10.1007/s004210050339
15. Hiruntrakul A, Nanagara R, Emasithi A, Borer KT. Effect of endurance exercise on resting testosterone levels in sedentary subjects. Cent Eur J Public Health. 2010;18(3):169-172.
16. Hew-Butler T, Noakes TD, Soldin SJ, Verbalis JG. Acute changes in endocrine and fluid balance markers during high-intensity, steady-state, and prolonged endurance running: unexpected increases in oxytocin and brain natriuretic peptide during exercise. Eur J Endocrinol. 2008;159(6):729-737. doi:10.1530/EJE-08-0064
17. Viru M, Hackney AC, Janson T, Karelson K, Viru A. Characterization of the cortisol response to incremental exercise in physically active young men. Acta Physiol Hung. 2008;95(2):219-227. doi:10.1556/APhysiol.95.2008.2.6
18. Vale RG de S, de Oliveira RD, Pernambuco CS, de Meneses YP da SF, Novaes J da S, de Andrade A de FD. Effects of muscle strength and aerobic training on basal serum levels of IGF-1 and cortisol in elderly women. Archives of Gerontology and Geriatrics. 2009;49(3):343-347. doi:10.1016/j.archger.2008.11.011
19. Deuster PA, Chrousos GP, Luger A, et al. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism. 1989;38(2):141-148. doi:10.1016/0026-0495(89)90253-9
20. Maresh C, Whittlesey M, Armstrong L, et al. Effect of Hydration State on Testosterone and Cortisol Responses to Training-Intensity Exercise in Collegiate Runners. International Journal of Sports Medicine. 2006;27(10):765-770. doi:10.1055/s-2005-872932
21. Peake J, Wilson G, Mackinnon L, Coombes JS. Carbohydrate supplementation and alterations in neutrophils, and plasma cortisol and myoglobin concentration after intense exercise. Eur J Appl Physiol. 2004;93(5-6):672-678. doi:10.1007/s00421-004-1248-5
22. Martínez-Díaz IC, Carrasco L. Neurophysiological Stress Response and Mood Changes Induced by High-Intensity Interval Training: A Pilot Study. Int J Environ Res Public Health. 2021;18(14):7320. doi:10.3390/ijerph18147320
23. Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research. 2006;1121(1):59-65. doi:10.1016/j.brainres.2006.08.105
24. Jörres M, Gunga H-C, Steinach M. Physiological Changes, Activity, and Stress During a 100-km-24-h Walking-March. Front Physiol. 2021;12:640710. doi:10.3389/fphys.2021.640710
25. Tremblay MS, Copeland JL, Helder WV. Influence of exercise duration on post-exercise steroid hormone responses in trained males. Eur J Appl Physiol. 2005;94(5-6):505-513. doi:10.1007/s00421-005-1380-x
26. Kuoppasalmi K, Näveri H, Härkönen M, Adlercreutz H. Plasma cortisol, androstenedione, testosterone and luteinizing hormone in running exercise of different intensities. Scand J Clin Lab Invest. 1980;40(5):403-409. doi:10.3109/00365518009101862
27. Farrell PA, Garthwaite TL, Gustafson AB. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1441-1444.
28. Stenqvist TB, Torstveit MK, Faber J, Melin AK. Impact of a 4-Week Intensified Endurance Training Intervention on Markers of Relative Energy Deficiency in Sport (RED-S) and Performance Among Well-Trained Male Cyclists. Front Endocrinol (Lausanne). 2020;11:512365. doi:10.3389/fendo.2020.512365
29. Witard OC, Turner JE, Jackman SR, et al. High-intensity training reduces CD8+ T-cell redistribution in response to exercise. Med Sci Sports Exerc. 2012;44(9):1689-1697. doi:10.1249/MSS.0b013e318257d2db
30. Vuorimaa T, Ahotupa M, Häkkinen K, Vasankari T. Different hormonal response to continuous and intermittent exercise in middle-distance and marathon runners. Scandinavian Journal of Medicine & Science in Sports. 2008;18(5):565-572. doi:10.1111/j.1600-0838.2007.00733.x
31. Tabata I, Atomi Y, Miyashita M. Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clinical Physiology. 1984;4(4):299-307. doi:10.1111/j.1475-097X.1984.tb00805.x
32. Caplin A, Chen FS, Beauchamp MR, Puterman E. The effects of exercise intensity on the cortisol response to a subsequent acute psychosocial stressor. Psychoneuroendocrinology. 2021;131:105336. doi:10.1016/j.psyneuen.2021.105336
33. Arvidson E, Dahlman AS, Börjesson M, Gullstrand L, Jonsdottir IH. The effects of exercise training on hypothalamic-pituitary-adrenal axis reactivity and autonomic response to acute stress-a randomized controlled study. Trials. 2020;21(1):888. doi:10.1186/s13063-020-04803-3
34. Raastad T, Bjøro T, Hallén J. Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82(1-2):121-128. doi:10.1007/s004210050661
35. Villanueva MG, Villanueva MG, Lane CJ, Schroeder ET. Influence of rest interval length on acute testosterone and cortisol responses to volume-load-equated total body hypertrophic and strength protocols. J Strength Cond Res. 2012;26(10):2755-2764. doi:10.1519/JSC.0b013e3182651fbe
36. Gepfert M, Trybulski R, Stastny P, Wilk M. Fast Eccentric Movement Tempo Elicits Higher Physiological Responses than Medium Eccentric Tempo in Ice-Hockey Players. Int J Environ Res Public Health. 2021;18(14):7694. doi:10.3390/ijerph18147694
37. Krüger K, Agnischock S, Lechtermann A, et al. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. Journal of Applied Physiology. 2011;110(5):1226-1232. doi:10.1152/japplphysiol.01295.2010
38. Goto K, Takahashi K, Yamamoto M, Takamatsu K. Hormone and Recovery Responses to Resistance Exercise with Slow Movement. The Journal of Physiological Sciences. 2008;58(1):7-14. doi:10.2170/physiolsci.RP003107
39. Sherk VD, Sherk KA, Kim S, Young KC, Bemben DA. Hormone responses to a continuous bout of rock climbing in men. Eur J Appl Physiol. 2010;111(4):687-693. doi:10.1007/s00421-010-1685-2
40. Magalhães JP, Santos DA, Correia IR, et al. Impact of combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year randomized controlled trial. Cardiovasc Diabetol. 2020;19(1):169. doi:10.1186/s12933-020-01136-y
41. Ambroży T, Rydzik Ł, Obmiński Z, et al. The Effect of High-Intensity Interval Training Periods on Morning Serum Testosterone and Cortisol Levels and Physical Fitness in Men Aged 35-40 Years. J Clin Med. 2021;10(10):2143. doi:10.3390/jcm10102143
42. Smilios I, Pilianidis T, Karamouzis M, Parlavantzas A, Tokmakidis S. Hormonal Responses after a Strength Endurance Resistance Exercise Protocol in Young and Elderly Males. International Journal of Sports Medicine. 2007;28(5):401-406. doi:10.1055/s-2006-924366
43. Kim E, Gregg LD, Kim Ld, Sherk VD, Bemben MG, Bemben DA. Hormone Responses to an Acute Bout of Low Intensity Blood Flow Restricted Resistance Exercise in College-Aged Females. J Sports Sci Med. 2014;13(1):91-96.
44. Bucciarelli V, Bianco F, Mucedola F, et al. Effect of Adherence to Physical Exercise on Cardiometabolic Profile in Postmenopausal Women. Int J Environ Res Public Health. 2021;18(2):E656. doi:10.3390/ijerph18020656
45. Martinez G, Daniels K, Chandra A. Fertility of Men and Women Aged 15–44 Years in the United States: National Survey of Family Growth, 2006–2010. Published April 12, 2012. Accessed September 14, 2016. http://www.cdc.gov/nchs/data/nhsr/nhsr051.pdf
46. Bessinger RC, McMurray RG, Hackney AC. Substrate utilization and hormonal responses to moderate intensity exercise during pregnancy and after delivery. American Journal of Obstetrics and Gynecology. 2002;186(4):757-764. doi:10.1067/mob.2002.122093
47. Meckel Y, Eliakim A, Seraev M, et al. The effect of a brief sprint interval exercise on growth factors and inflammatory mediators. J Strength Cond Res. 2009;23(1):225-230. doi:10.1519/JSC.0b013e3181876a9a
48. Martínez-Díaz IC, Carrasco L. Neurophysiological Stress Response and Mood Changes Induced by High-Intensity Interval Training: A Pilot Study. Int J Environ Res Public Health. 2021;18(14):7320. doi:10.3390/ijerph18147320
49. Gepfert M, Trybulski R, Stastny P, Wilk M. Fast Eccentric Movement Tempo Elicits Higher Physiological Responses than Medium Eccentric Tempo in Ice-Hockey Players. Int J Environ Res Public Health. 2021;18(14):7694. doi:10.3390/ijerph18147694