Highly Branched Cyclic Dextrin and its Ergogenic Effects in Athletes: A Brief Review

Main Article Content

Dylan Wilburn
Steven Machek
Ahmed Ismaeel



Highly branched cyclic dextrin (HBCD) is a relatively new carbohydrate source that has gained much popularity in sports nutrition supplements, quickly becoming one of the most popular sports and fitness supplements globally. Due to its high molecular weight and low osmolality, HBCD is thought to provide an ergogenic advantage over other carbohydrate sources via faster gastric emptying and faster absorption. The purpose of this brief review is to explore performance claims and implications of HBCD use. We provide rationale for recommended use based on results of scientific studies conducted in both animals and humans.

Abstract 3269 | PDF Downloads 10773


1. U.S. Food and Drug Administration C for FS and A. GRAS Notice Inventory - Agency Response Letter GRAS Notice No. GRN 000404. Accessed October 22, 2015. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm327929.htm
2. Highly Branched Cyclic Dextrin (5 lb) - Canadian Protein.com. Accessed October 25, 2015. http://www.canadianprotein.com/highly-branched-cyclic-dextrin-5lb.html
3. Bergström J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309-310.
4. Price TB, Sanders K. Muscle and liver glycogen utilization during prolonged lift and carry exercise: male and female responses. Physiol Rep. 2017;5(4):e13113. doi:10.14814/phy2.13113
5. Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311(3):E543-553. doi:10.1152/ajpendo.00232.2016
6. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev. 2018;76(4):243-259. doi:10.1093/nutrit/nuy001
7. López-Soldado I, Guinovart JJ, Duran J. Increased liver glycogen levels enhance exercise capacity in mice. J Biol Chem. 2021;297(2):100976. doi:10.1016/j.jbc.2021.100976
8. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med Auckl NZ. 2003;33(2):117-144. doi:10.2165/00007256-200333020-00004
9. Ivy JL. Muscle Glycogen Synthesis Before and After Exercise. Sports Med. 1991;11(1):6-19. doi:10.2165/00007256-199111010-00002
10. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106-111. doi:10.1093/ajcn/72.1.106
11. Halse R, Bonavaud SM, Armstrong JL, McCormack JG, Yeaman SJ. Control of Glycogen Synthesis by Glucose, Glycogen, and Insulin in Cultured Human Muscle Cells. Diabetes. 2001;50(4):720-726. doi:10.2337/diabetes.50.4.720
12. Terjung RL, Baldwin KM, Winder WW, Holloszy JO. Glycogen repletion in different types of muscle and in liver after exhausting exercise. Am J Physiol. 1974;226(6):1387-1391.
13. Davis JM, Jackson DA. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and... Int J Sport Nutr. 1997;7(4):261.
14. Jason J Winnick JMD. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306-315. doi:10.1249/01.MSS.0000152803.35130.A4
15. Welsh RS, Davis JM, Burke JR, Williams HG. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc. 2002;34(4):723-731.
16. Kerksick CM, Wilborn CD, Roberts MD, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr. 2018;15(1):38. doi:10.1186/s12970-018-0242-y
17. Craig EN, Cummings EG. Dehydration and muscular work. J Appl Physiol. 1966;21(2):670-674.
18. Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithäuser R. Fluids and hydration in prolonged endurance performance. Nutr Burbank Los Angel Cty Calif. 2004;20(7-8):651-656. doi:10.1016/j.nut.2004.04.011
19. Choi SSH, Danielewska-Nikiel B, Ohdan K, Kojima I, Takata H, Kuriki T. Safety evaluation of highly-branched cyclic dextrin and a 1,4-α-glucan branching enzyme from Bacillus stearothermophilus. Regul Toxicol Pharmacol. 2009;55(3):281-290. doi:10.1016/j.yrtph.2009.07.011
20. Takii H, Kometani T, Nishimura T, Kuriki T, Fushiki T. A sports drink based on highly branched cyclic dextrin generates few gastrointestinal disorders in untrained men during bicycle exercise. Food Sci Technol Res. 2004;10(4):428-431. doi:10.3136/fstr.10.428
21. Aulin KP, Söderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346-351. doi:10.1007/s004210050053
22. Takii H, Takii (Nagao) Y, Kometani T, et al. Fluids containing a highly branched cyclic dextrin influence the gastric emptying rate. Int J Sports Med. 2005;26(4):314-319. doi:10.1055/s-2004-820999
23. Takii H, Ishihara K, Kometani T, Okada S, Fushiki T. Enhancement of swimming endurance in mice by highly branched cyclic dextrin. Biosci Biotechnol Biochem. 1999;63(12):2045-2052. doi:10.1271/bbb.63.2045
24. Ishihara K, Yamada A, Mita Y, et al. Improved swimming pool achieves higher reproducibility and sensitivity to effect of food components as ergogenic aids. J Nutr Sci Vitaminol (Tokyo). 2009;55(3):301-308. doi:10.3177/jnsv.55.301
25. Furuyashiki T, Tanimoto H, Yokoyama Y, Kitaura Y, Kuriki T, Shimomura Y. Effects of ingesting highly branched cyclic dextrin during endurance exercise on rating of perceived exertion and blood components associated with energy metabolism. Biosci Biotechnol Biochem. 2014;78(12):2117-2119. doi:10.1080/09168451.2014.943654
26. Shiraki T, Kometani T, Yoshitani K, Takata H, Nomura T. Evaluation of Exercise Performance with the Intake of Highly Branched Cyclic Dextrin in Athletes. Food Sci Technol Res. 2015;21(3):499-502.
27. Smith LL. Overtraining, excessive exercise, and altered immunity. Sports Med. 2012;33(5):347-364. doi:10.2165/00007256-200333050-00002
28. Nieman DC. Immunonutrition support for athletes. Nutr Rev. 2008;66(6):310-320. doi:10.1111/j.1753-4887.2008.00038.x
29. Suzuki K, Shiraishi K, Yoshitani K, Sugama K, Kometani T. Effect of a sports drink based on highly-branched cyclic dextrin on cytokine responses to exhaustive endurance exercise. J Sports Med Phys Fitness. 2014;54(5):622-630.
30. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077-1087. doi:10.1152/japplphysiol.00622.2016